Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Autoencoder Implementation | VAE implementation
Image Synthesis Through Generative Networks

bookAutoencoder Implementation

Finally, we can bring it all together and create an autoencoder that restores the input image with the highest possible quality.

We will use the MNIST dataset because it is relatively simple, and the training time for our network will not be too long.

Note

You can find the source code via the following Link. If you want to run the code or even change some components, you can copy the notebook and work with the copy.

We can see that our model accurately restores handwritten digits.
However, if we attempt to generate new data using samples from a Gaussian distribution, the images appear smoothed and resemble random, unstructured noise.

To address this issue, we need to regularize our latent space by using a Variational Autoencoder (VAE).

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 3

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Mi faccia domande su questo argomento

Riassuma questo capitolo

Mostri esempi dal mondo reale

Awesome!

Completion rate improved to 5.26

bookAutoencoder Implementation

Scorri per mostrare il menu

Finally, we can bring it all together and create an autoencoder that restores the input image with the highest possible quality.

We will use the MNIST dataset because it is relatively simple, and the training time for our network will not be too long.

Note

You can find the source code via the following Link. If you want to run the code or even change some components, you can copy the notebook and work with the copy.

We can see that our model accurately restores handwritten digits.
However, if we attempt to generate new data using samples from a Gaussian distribution, the images appear smoothed and resemble random, unstructured noise.

To address this issue, we need to regularize our latent space by using a Variational Autoencoder (VAE).

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 3
some-alt