Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Mahalanobis Distance in Practice | Statistical and Distance-Based Methods
Outlier and Novelty Detection in Practice

bookChallenge: Mahalanobis Distance in Practice

Compito

Swipe to start coding

You are given a small 2D dataset. Your goal is to compute the Mahalanobis distance of each observation from the data center and use it to detect outliers.

Steps:

  1. Compute the mean vector of the dataset.
  2. Compute the covariance matrix and its inverse.
  3. For each observation, compute Mahalanobis distance using the formula:

[ D(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)} ] 4. Store all distances in an array distances. 5. Classify points as outliers if distance > threshold (use threshold = 2.5). 6. Print both arrays (distances and outliers) for verification.

Use NumPy only.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 4.55

bookChallenge: Mahalanobis Distance in Practice

Scorri per mostrare il menu

Compito

Swipe to start coding

You are given a small 2D dataset. Your goal is to compute the Mahalanobis distance of each observation from the data center and use it to detect outliers.

Steps:

  1. Compute the mean vector of the dataset.
  2. Compute the covariance matrix and its inverse.
  3. For each observation, compute Mahalanobis distance using the formula:

[ D(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)} ] 4. Store all distances in an array distances. 5. Classify points as outliers if distance > threshold (use threshold = 2.5). 6. Print both arrays (distances and outliers) for verification.

Use NumPy only.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

some-alt