Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: One-Class SVM for Novelty Detection | Kernel-Based Methods
Outlier and Novelty Detection in Practice

bookChallenge: One-Class SVM for Novelty Detection

Compito

Swipe to start coding

You are given a 2D dataset of normal points and a few anomalies. Your task is to train a One-Class SVM model to detect novelties, visualize prediction results, and print anomaly proportions.

Follow these steps:

  1. Import and initialize OneClassSVM from sklearn.svm.
    • Use kernel='rbf', gamma=0.1, nu=0.05.
  2. Fit the model on normal data only (X_train).
  3. Predict labels for test data (X_test).
    • Label meaning: 1 → normal, -1 → novel/anomalous.
  4. Compute the fraction of anomalies in X_test.
  5. Print:
    • Shapes of train/test sets.
    • Number and fraction of anomalies detected.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 5. Capitolo 3
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 4.55

bookChallenge: One-Class SVM for Novelty Detection

Scorri per mostrare il menu

Compito

Swipe to start coding

You are given a 2D dataset of normal points and a few anomalies. Your task is to train a One-Class SVM model to detect novelties, visualize prediction results, and print anomaly proportions.

Follow these steps:

  1. Import and initialize OneClassSVM from sklearn.svm.
    • Use kernel='rbf', gamma=0.1, nu=0.05.
  2. Fit the model on normal data only (X_train).
  3. Predict labels for test data (X_test).
    • Label meaning: 1 → normal, -1 → novel/anomalous.
  4. Compute the fraction of anomalies in X_test.
  5. Print:
    • Shapes of train/test sets.
    • Number and fraction of anomalies detected.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 5. Capitolo 3
single

single

some-alt