Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Visualizing the Dynamics Across Clusters | K-Means Algorithm
Cluster Analysis in Python

Scorri per mostrare il menu

book
Visualizing the Dynamics Across Clusters

The selective pair of months on the scatter plot looked good, didn't it? Maybe there were no key differences between 'areas' on the plot, but at least there were no outliers outside the respective groups, and in general, all groups were disjoint.

Finally, let's find out the yearly dynamics for each cluster, i.e. let's build the line plot representing the monthly averages for each group of points.

Compito

Swipe to start coding

Table
  1. Extract the necessary columns (month's names and temperatures) within the col variable:
  • Firstly, extract the 2-13 column names as list type, and save them within the col variable.
  • Then add the 'prediction' string to the list col.
  1. Calculate the monthly average temperatures for each cluster, and save the result within monthly_data variable:
  • Firstly group the observations of col column of data by 'prediction'.
  • Then calculate .mean() of grouped table.
  • Then apply .stack() to stack the table (already done).
  • Finally reset the indices using .reset_index() method.
  1. Assign list ['Group', 'Month', 'Temp'] as column names for transformed data within monthly_data variable.

  2. Build the line plot 'Month' vs 'Temp' for each Group using monthly_data DataFrame.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 8

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Visualizing the Dynamics Across Clusters

The selective pair of months on the scatter plot looked good, didn't it? Maybe there were no key differences between 'areas' on the plot, but at least there were no outliers outside the respective groups, and in general, all groups were disjoint.

Finally, let's find out the yearly dynamics for each cluster, i.e. let's build the line plot representing the monthly averages for each group of points.

Compito

Swipe to start coding

Table
  1. Extract the necessary columns (month's names and temperatures) within the col variable:
  • Firstly, extract the 2-13 column names as list type, and save them within the col variable.
  • Then add the 'prediction' string to the list col.
  1. Calculate the monthly average temperatures for each cluster, and save the result within monthly_data variable:
  • Firstly group the observations of col column of data by 'prediction'.
  • Then calculate .mean() of grouped table.
  • Then apply .stack() to stack the table (already done).
  • Finally reset the indices using .reset_index() method.
  1. Assign list ['Group', 'Month', 'Temp'] as column names for transformed data within monthly_data variable.

  2. Build the line plot 'Month' vs 'Temp' for each Group using monthly_data DataFrame.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 8
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt