Comparing the Dynamics
That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.
Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.
Swipe to start coding
Visualize the monthly temperature dynamics across clusters. Follow the next steps:
- Import
KMedoidsfunction fromsklearn_extra.cluster. - Create a
KMedoidsobject namedmodelwith 4 clusters. - Fit the 3-15 columns (these are not indices, but positions) of
datatomodel. - Add the
'prediction'column todatawith predicted bymodellabels. - Calculate the monthly averages using
dataand save the result within thedDataFrame:
- Group the observations by the
'prediction'column. - Calculate the mean values.
- Stack the columns into indices (already done).
- Reset the indices.
- Assign
['Group', 'Month', 'Temp']as columns names ofd. - Build
lineplotwith'Month'on the x-axis,'Temp'on the y-axis for each'Group'ofdDataFrame (i.e. separate line and color for each'Group').
Soluzione
Grazie per i tuoi commenti!
single
Chieda ad AI
Chieda ad AI
Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione
Fantastico!
Completion tasso migliorato a 3.57
Comparing the Dynamics
Scorri per mostrare il menu
That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.
Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.
Swipe to start coding
Visualize the monthly temperature dynamics across clusters. Follow the next steps:
- Import
KMedoidsfunction fromsklearn_extra.cluster. - Create a
KMedoidsobject namedmodelwith 4 clusters. - Fit the 3-15 columns (these are not indices, but positions) of
datatomodel. - Add the
'prediction'column todatawith predicted bymodellabels. - Calculate the monthly averages using
dataand save the result within thedDataFrame:
- Group the observations by the
'prediction'column. - Calculate the mean values.
- Stack the columns into indices (already done).
- Reset the indices.
- Assign
['Group', 'Month', 'Temp']as columns names ofd. - Build
lineplotwith'Month'on the x-axis,'Temp'on the y-axis for each'Group'ofdDataFrame (i.e. separate line and color for each'Group').
Soluzione
Grazie per i tuoi commenti!
single