Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Is 4 the Optimal Number of Clusters? | Spectral Clustering
Cluster Analysis in Python

book
Is 4 the Optimal Number of Clusters?

The last chart (displayed below) left the question about an optimal number of clusters unanswered. Seems like 4 is the 'local maximum', but the value 5 is not significantly lower than 4. We need to consider both cases.

Let's watch the scatter plot of average January vs July temperatures in the case of 4 clusters.

# Import the libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import SpectralClustering

# Read the data
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/138ab9ad-aa37-4310-873f-0f62abafb038/Cities+weather.csv', index_col = 0)

# Create the model
model = SpectralClustering(n_clusters = 4, affinity = 'nearest_neighbors')

# Fit the data and predict the labels
data['prediction'] = model.fit_predict(data.iloc[:,2:14])

# Visualize the results
sns.scatterplot(x = 'Jan', y = 'Jul', hue = 'prediction', data = data)
plt.show()
123456789101112131415161718
# Import the libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import SpectralClustering # Read the data data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/138ab9ad-aa37-4310-873f-0f62abafb038/Cities+weather.csv', index_col = 0) # Create the model model = SpectralClustering(n_clusters = 4, affinity = 'nearest_neighbors') # Fit the data and predict the labels data['prediction'] = model.fit_predict(data.iloc[:,2:14]) # Visualize the results sns.scatterplot(x = 'Jan', y = 'Jul', hue = 'prediction', data = data) plt.show()
copy

The clustering seems logical, it splits the cities into different disjoint groups. But what if we build the same chart but for 5 clusters? That will be your task!

Compito

Swipe to start coding

Table
  1. Import SpectralClustering function from sklearn.cluster.
  2. Create a SpectralClustering model with 5 clusters using the 'nearest_neighbors' affinity.
  3. Fit the 3-14 columns of data to the model and predict the labels. Save the result within the 'prediction' column of data.
  4. Build the seaborn scatter plot with average January (column 'Jan') vs July (column 'Jul') temperatures for each cluster (column 'prediction').

Soluzione

# Import the libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import SpectralClustering

# Read the data
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/138ab9ad-aa37-4310-873f-0f62abafb038/Cities+weather.csv', index_col = 0)

# Create the model
model = SpectralClustering(n_clusters = 5, affinity = 'nearest_neighbors')

# Fit the data and predict the labels
data['prediction'] = model.fit_predict(data.iloc[:,2:14])

# Visualize the results
sns.scatterplot(x = 'Jan', y = 'Jul', hue = 'prediction', data = data)
plt.show()

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 5
# Import the libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
___

# Read the data
data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/138ab9ad-aa37-4310-873f-0f62abafb038/Cities+weather.csv', index_col = 0)

# Create the model
model = ___(___, ___)

# Fit the data and predict the labels
data['prediction'] = ___.___(___.___[:,___])

# Visualize the results
___.___(x = '___', y = '___', ___ = 'prediction', data = data)
___.___()
toggle bottom row
some-alt