Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Visualize Feature Impact | Product Experimentation and Hypothesis Testing
Python for Product Managers

bookChallenge: Visualize Feature Impact

Visualizing before-and-after metrics is a powerful way to communicate the impact of a product feature launch. By presenting both sets of data on a single chart, you can clearly show stakeholders how a key metric has changed due to your intervention. Adding clear titles, axis labels, and a legend ensures that your audience immediately understands the story your data tells, making your insights actionable and persuasive.

1234567891011121314151617
import matplotlib.pyplot as plt # Sample data: before and after feature launch metrics = ['Active Users', 'Conversion Rate', 'Avg Session Time'] before = [1200, 0.15, 5.2] after = [1450, 0.19, 6.1] plt.figure(figsize=(8, 5)) plt.plot(metrics, before, marker='o', label='Before Launch') plt.plot(metrics, after, marker='o', label='After Launch') plt.title('Feature Impact on Key Metrics') plt.xlabel('Metric') plt.ylabel('Value') plt.legend() plt.tight_layout() plt.show()
copy
Compito

Swipe to start coding

Write a script that visualizes the impact of a feature launch on key product metrics using matplotlib.

  • Plot both before_launch and after_launch metric values on the same chart, using the metrics list for the x-axis.
  • Add a title that summarizes the purpose of the chart.
  • Label the x-axis and y-axis appropriately.
  • Include a legend that distinguishes between before and after the feature launch.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 7
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

bookChallenge: Visualize Feature Impact

Scorri per mostrare il menu

Visualizing before-and-after metrics is a powerful way to communicate the impact of a product feature launch. By presenting both sets of data on a single chart, you can clearly show stakeholders how a key metric has changed due to your intervention. Adding clear titles, axis labels, and a legend ensures that your audience immediately understands the story your data tells, making your insights actionable and persuasive.

1234567891011121314151617
import matplotlib.pyplot as plt # Sample data: before and after feature launch metrics = ['Active Users', 'Conversion Rate', 'Avg Session Time'] before = [1200, 0.15, 5.2] after = [1450, 0.19, 6.1] plt.figure(figsize=(8, 5)) plt.plot(metrics, before, marker='o', label='Before Launch') plt.plot(metrics, after, marker='o', label='After Launch') plt.title('Feature Impact on Key Metrics') plt.xlabel('Metric') plt.ylabel('Value') plt.legend() plt.tight_layout() plt.show()
copy
Compito

Swipe to start coding

Write a script that visualizes the impact of a feature launch on key product metrics using matplotlib.

  • Plot both before_launch and after_launch metric values on the same chart, using the metrics list for the x-axis.
  • Add a title that summarizes the purpose of the chart.
  • Label the x-axis and y-axis appropriately.
  • Include a legend that distinguishes between before and after the feature launch.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 7
single

single

some-alt