Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Managing Duplicate Data | Handling Missing and Duplicate Data
Python for Data Cleaning

bookManaging Duplicate Data

Duplicate data is a common issue in real-world datasets. Duplicates can arise for several reasons: manual data entry errors; merging datasets from multiple sources; or system glitches that cause repeated records. The presence of duplicate rows can distort your analysis by inflating counts; skewing statistical summaries; and leading to incorrect conclusions. Removing duplicates is a crucial step to ensure the accuracy and reliability of your data-driven insights.

12345678910111213141516171819
import pandas as pd # Sample DataFrame with duplicate rows data = { "name": ["Alice", "Bob", "Alice", "David", "Bob"], "age": [25, 30, 25, 22, 30], "city": ["New York", "Paris", "New York", "London", "Paris"] } df = pd.DataFrame(data) # Identify duplicate rows duplicates = df.duplicated() print("Duplicated rows:") print(duplicates) # Remove duplicate rows df_no_duplicates = df.drop_duplicates() print("\nDataFrame after removing duplicates:") print(df_no_duplicates)
copy

1. What does the duplicated() method return?

2. How does drop_duplicates() affect the original DataFrame by default?

question mark

What does the duplicated() method return?

Select the correct answer

question mark

How does drop_duplicates() affect the original DataFrame by default?

Select the correct answer

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 2

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Awesome!

Completion rate improved to 5.56

bookManaging Duplicate Data

Scorri per mostrare il menu

Duplicate data is a common issue in real-world datasets. Duplicates can arise for several reasons: manual data entry errors; merging datasets from multiple sources; or system glitches that cause repeated records. The presence of duplicate rows can distort your analysis by inflating counts; skewing statistical summaries; and leading to incorrect conclusions. Removing duplicates is a crucial step to ensure the accuracy and reliability of your data-driven insights.

12345678910111213141516171819
import pandas as pd # Sample DataFrame with duplicate rows data = { "name": ["Alice", "Bob", "Alice", "David", "Bob"], "age": [25, 30, 25, 22, 30], "city": ["New York", "Paris", "New York", "London", "Paris"] } df = pd.DataFrame(data) # Identify duplicate rows duplicates = df.duplicated() print("Duplicated rows:") print(duplicates) # Remove duplicate rows df_no_duplicates = df.drop_duplicates() print("\nDataFrame after removing duplicates:") print(df_no_duplicates)
copy

1. What does the duplicated() method return?

2. How does drop_duplicates() affect the original DataFrame by default?

question mark

What does the duplicated() method return?

Select the correct answer

question mark

How does drop_duplicates() affect the original DataFrame by default?

Select the correct answer

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 2
some-alt