Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Remove Whitespace from Strings | Foundations of Data Cleaning
Python for Data Cleaning

bookChallenge: Remove Whitespace from Strings

When working with categorical data in a DataFrame, extra whitespace at the beginning or end of string values can cause serious inconsistencies. For example, the values "apple", " apple", and "apple " may look the same to you, but Python treats them as different strings. This can lead to problems when grouping, filtering, or comparing data, and may result in incorrect analysis or missed patterns. Cleaning up these inconsistencies by stripping whitespace is a crucial first step in preparing your data for analysis.

12345678910
import pandas as pd data = { "Fruit": [" apple", "banana ", " cherry ", "date"], "Color": [" red", "yellow ", " red ", "brown"], "Count": [10, 5, 7, 3] } df = pd.DataFrame(data) print(df)
copy
Compito

Swipe to start coding

Write a function that removes leading and trailing whitespace from all string columns in a DataFrame.

  • The function must return a new DataFrame with the same columns as the input.
  • All leading and trailing whitespace must be removed from every string value in columns with string data type.
  • Non-string columns must remain unchanged.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 5
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Remove Whitespace from Strings

Scorri per mostrare il menu

When working with categorical data in a DataFrame, extra whitespace at the beginning or end of string values can cause serious inconsistencies. For example, the values "apple", " apple", and "apple " may look the same to you, but Python treats them as different strings. This can lead to problems when grouping, filtering, or comparing data, and may result in incorrect analysis or missed patterns. Cleaning up these inconsistencies by stripping whitespace is a crucial first step in preparing your data for analysis.

12345678910
import pandas as pd data = { "Fruit": [" apple", "banana ", " cherry ", "date"], "Color": [" red", "yellow ", " red ", "brown"], "Count": [10, 5, 7, 3] } df = pd.DataFrame(data) print(df)
copy
Compito

Swipe to start coding

Write a function that removes leading and trailing whitespace from all string columns in a DataFrame.

  • The function must return a new DataFrame with the same columns as the input.
  • All leading and trailing whitespace must be removed from every string value in columns with string data type.
  • Non-string columns must remain unchanged.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 5
single

single

some-alt