Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Identify Missing Data | Foundations of Data Cleaning
Python for Data Cleaning

bookChallenge: Identify Missing Data

Missing data is a common issue in real-world datasets, where some entries may be absent, incomplete, or recorded as "not available." Before you analyze or model your data, it is essential to identify where these missing values occur. Failing to address missing data can lead to inaccurate results, biased insights, or errors in downstream processing. Recognizing the presence and location of missing values is the first step in ensuring your data is clean and reliable for analysis.

12345678910111213
import pandas as pd import numpy as np # Create a sample DataFrame with missing values data = { "Name": ["Alice", "Bob", "Charlie", "David"], "Age": [25, np.nan, 30, 22], "City": ["New York", "Los Angeles", np.nan, "Chicago"], "Score": [85, 90, np.nan, 88] } df = pd.DataFrame(data) print(df)
copy
Compito

Swipe to start coding

Write a function that returns a boolean DataFrame indicating the location of missing values in the provided DataFrame.

  • The function must return a DataFrame of the same shape as the input, where each cell is True if the corresponding value is missing and False otherwise.
  • The function must work for any DataFrame containing missing values.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 3
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

How can I identify which values are missing in this DataFrame?

What are the common ways to handle missing data in pandas?

Can you explain why missing data can cause problems in analysis?

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Identify Missing Data

Scorri per mostrare il menu

Missing data is a common issue in real-world datasets, where some entries may be absent, incomplete, or recorded as "not available." Before you analyze or model your data, it is essential to identify where these missing values occur. Failing to address missing data can lead to inaccurate results, biased insights, or errors in downstream processing. Recognizing the presence and location of missing values is the first step in ensuring your data is clean and reliable for analysis.

12345678910111213
import pandas as pd import numpy as np # Create a sample DataFrame with missing values data = { "Name": ["Alice", "Bob", "Charlie", "David"], "Age": [25, np.nan, 30, 22], "City": ["New York", "Los Angeles", np.nan, "Chicago"], "Score": [85, 90, np.nan, 88] } df = pd.DataFrame(data) print(df)
copy
Compito

Swipe to start coding

Write a function that returns a boolean DataFrame indicating the location of missing values in the provided DataFrame.

  • The function must return a DataFrame of the same shape as the input, where each cell is True if the corresponding value is missing and False otherwise.
  • The function must work for any DataFrame containing missing values.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 3
single

single

some-alt