Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Build a Simple B-Tree | Indexing and Search Structures
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Data Structures and Algorithms for Scalable Systems

bookChallenge: Build a Simple B-Tree

Compito

Swipe to start coding

In this challenge, you will implement a simplified B-Tree — a balanced search tree widely used in databases and file systems.

Your task is to complete the implementation so that the tree supports:

insert(key):

  • Inserts a new key into the B-Tree.
  • Splits nodes when they overflow to maintain B-Tree properties.
  • The root must split correctly when full.
  • Insertion must always place keys in sorted order.

search(key):

  • Returns True if the key is present in the B-Tree.
  • Returns False if the key is not found.

Additional Rules:

  • The minimum degree t determines the minimum/maximum number of keys in each node.
  • You do not need to implement deletion or disk storage.
  • The tree must correctly handle multiple insertions and node splits.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Build a Simple B-Tree

Scorri per mostrare il menu

Compito

Swipe to start coding

In this challenge, you will implement a simplified B-Tree — a balanced search tree widely used in databases and file systems.

Your task is to complete the implementation so that the tree supports:

insert(key):

  • Inserts a new key into the B-Tree.
  • Splits nodes when they overflow to maintain B-Tree properties.
  • The root must split correctly when full.
  • Insertion must always place keys in sorted order.

search(key):

  • Returns True if the key is present in the B-Tree.
  • Returns False if the key is not found.

Additional Rules:

  • The minimum degree t determines the minimum/maximum number of keys in each node.
  • You do not need to implement deletion or disk storage.
  • The tree must correctly handle multiple insertions and node splits.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

some-alt