Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Stacked Bar Charts | Creating Commonly Used Plots
Ultimate Visualization with Python

Scorri per mostrare il menu

book
Stacked Bar Charts

Stacked bar charts allow comparison of multiple categories within each x-axis group. For example, rather than showing only the total GDP of each country, they can illustrate the contribution of individual economic sectors to the total.

1234567891011
import matplotlib.pyplot as plt import numpy as np countries = ['USA', 'China', 'Japan'] primary_sector = np.array([1.4, 4.8, 0.4]) secondary_sector = np.array([11.3, 6.2, 0.8]) tertiary_sector = np.array([14.2, 8.4, 3.2]) # Calling the bar() function multiple times for each category (sector) plt.bar(countries, primary_sector) plt.bar(countries, secondary_sector, bottom=primary_sector) plt.bar(countries, tertiary_sector, bottom=primary_sector + secondary_sector) plt.show()
copy

To create stacked bars, the bar() function is called multiple times—once for each sector. In each call, the same countries list is used for the x-axis, and the bottom parameter ensures that each new segment is stacked on top of the previous one.

Note
Study More

The bottom parameter specifies the y coordinate(s) of the bottom side(s) of the bars. Here is the bar() documentation.

Compito

Swipe to start coding

  1. Use the correct function for creating bar charts.
  2. Plot the lower bars for yes_answers.
  3. Plot the bars for no_answers on top of the bars for yes_answers with specifying the correct keyword argument.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 5
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Stacked Bar Charts

Stacked bar charts allow comparison of multiple categories within each x-axis group. For example, rather than showing only the total GDP of each country, they can illustrate the contribution of individual economic sectors to the total.

1234567891011
import matplotlib.pyplot as plt import numpy as np countries = ['USA', 'China', 'Japan'] primary_sector = np.array([1.4, 4.8, 0.4]) secondary_sector = np.array([11.3, 6.2, 0.8]) tertiary_sector = np.array([14.2, 8.4, 3.2]) # Calling the bar() function multiple times for each category (sector) plt.bar(countries, primary_sector) plt.bar(countries, secondary_sector, bottom=primary_sector) plt.bar(countries, tertiary_sector, bottom=primary_sector + secondary_sector) plt.show()
copy

To create stacked bars, the bar() function is called multiple times—once for each sector. In each call, the same countries list is used for the x-axis, and the bottom parameter ensures that each new segment is stacked on top of the previous one.

Note
Study More

The bottom parameter specifies the y coordinate(s) of the bottom side(s) of the bars. Here is the bar() documentation.

Compito

Swipe to start coding

  1. Use the correct function for creating bar charts.
  2. Plot the lower bars for yes_answers.
  3. Plot the bars for no_answers on top of the bars for yes_answers with specifying the correct keyword argument.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 5
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt