Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Evaluating the Model | Section
Regression with Python

bookChallenge: Evaluating the Model

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Next, we'll create a scatterplot for this data:

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
copy

A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.

But before you start, recall the PolynomialFeatures class.

fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.

The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.

Compito

Swipe to start coding

  1. Assign the X variable to a DataFrame containing column 'age'.
  2. Create an X_tilde matrix using the PolynomialFeatures class.
  3. Build and train a Polynomial Regression model.
  4. Reshape X_new to be a 2-D array.
  5. Preprocess X_new the same way as X.
  6. Print the model's parameters.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 15
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

bookChallenge: Evaluating the Model

Scorri per mostrare il menu

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Next, we'll create a scatterplot for this data:

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
copy

A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.

But before you start, recall the PolynomialFeatures class.

fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.

The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.

Compito

Swipe to start coding

  1. Assign the X variable to a DataFrame containing column 'age'.
  2. Create an X_tilde matrix using the PolynomialFeatures class.
  3. Build and train a Polynomial Regression model.
  4. Reshape X_new to be a 2-D array.
  5. Preprocess X_new the same way as X.
  6. Print the model's parameters.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 15
single

single

some-alt