Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Predicting Prices Using Two Features | Section
Practice
Projects
Quizzes & Challenges
Quiz
Challenges
/
Regression with Python

bookChallenge: Predicting Prices Using Two Features

For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
copy

Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.

Compito

Swipe to start coding

  1. Assign the 'age' and 'square_feet' columns of df to X.
  2. Preprocess the X for the OLS's class constructor.
  3. Build and train the model using the OLS class.
  4. Preprocess the X_new array the same as X.
  5. Predict the target for X_new.
  6. Print the model's summary table.

Soluzione

If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 10
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

bookChallenge: Predicting Prices Using Two Features

Scorri per mostrare il menu

For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
copy

Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.

Compito

Swipe to start coding

  1. Assign the 'age' and 'square_feet' columns of df to X.
  2. Preprocess the X for the OLS's class constructor.
  3. Build and train the model using the OLS class.
  4. Preprocess the X_new array the same as X.
  5. Predict the target for X_new.
  6. Print the model's summary table.

Soluzione

If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 10
single

single

some-alt