Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Apply the Estimator API | Core scikit-learn API Patterns
Mastering scikit-learn API and Workflows

bookChallenge: Apply the Estimator API

Compito

Swipe to start coding

You are working with the scikit-learn Estimator API, which follows a consistent pattern across models.

Your goal is to apply the Estimator workflow by fitting a model and generating predictions using the standard fit and predict methods.

  1. Create a LogisticRegression estimator with random_state=42.
  2. Fit the estimator using the provided training data:
    • X_train;
    • y_train.
  3. Use the fitted estimator to generate predictions for X_test.
  4. Store the predictions in the variable y_pred.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you explain this in simpler terms?

What are the main benefits or drawbacks?

Can you give me a real-world example?

close

bookChallenge: Apply the Estimator API

Scorri per mostrare il menu

Compito

Swipe to start coding

You are working with the scikit-learn Estimator API, which follows a consistent pattern across models.

Your goal is to apply the Estimator workflow by fitting a model and generating predictions using the standard fit and predict methods.

  1. Create a LogisticRegression estimator with random_state=42.
  2. Fit the estimator using the provided training data:
    • X_train;
    • y_train.
  3. Use the fitted estimator to generate predictions for X_test.
  4. Store the predictions in the variable y_pred.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 4
single

single

some-alt