Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Data Fitting in Practice | Optimization and Root Finding
Introduction to SciPy

bookChallenge: Data Fitting in Practice

Fitting models to experimental data is a fundamental task in scientific computing, enabling you to extract meaningful trends from noisy measurements. In previous chapters, you explored optimization and root-finding methods, and learned about curve fitting and least squares approaches. Now, you will put these concepts into practice by using scipy.optimize.curve_fit to fit a polynomial model to a set of noisy data points. This hands-on challenge will help you solidify your understanding of data fitting and model parameter extraction.

Compito

Swipe to start coding

Given noisy data points generated from a quadratic relationship, use scipy.optimize.curve_fit to fit the poly_model function to the data. Extract and return the fitted coefficients as a tuple (a, b, c).

  • Use curve_fit to fit poly_model to the provided x_data and y_data.
  • Retrieve the fitted parameters from the result of curve_fit.
  • Return the parameters as a tuple (a, b, c).

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 6
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you walk me through how to use `scipy.optimize.curve_fit` for polynomial fitting?

What are the steps to prepare my data for curve fitting?

Can you explain how to interpret the results from `curve_fit`?

close

Awesome!

Completion rate improved to 4.17

bookChallenge: Data Fitting in Practice

Scorri per mostrare il menu

Fitting models to experimental data is a fundamental task in scientific computing, enabling you to extract meaningful trends from noisy measurements. In previous chapters, you explored optimization and root-finding methods, and learned about curve fitting and least squares approaches. Now, you will put these concepts into practice by using scipy.optimize.curve_fit to fit a polynomial model to a set of noisy data points. This hands-on challenge will help you solidify your understanding of data fitting and model parameter extraction.

Compito

Swipe to start coding

Given noisy data points generated from a quadratic relationship, use scipy.optimize.curve_fit to fit the poly_model function to the data. Extract and return the fitted coefficients as a tuple (a, b, c).

  • Use curve_fit to fit poly_model to the provided x_data and y_data.
  • Retrieve the fitted parameters from the result of curve_fit.
  • Return the parameters as a tuple (a, b, c).

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 6
single

single

some-alt