Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Nozioni di Base NLP | Analisi del Sentiment
Introduzione alle RNN

bookNozioni di Base NLP

NLP enables machines to read, understand, and generate human language. By applying various algorithms and models, NLP systems can perform tasks such as speech recognition, translation, summarization, and sentiment analysis.

Compiti principali nell'NLP:

  • Text preprocessing: involves cleaning the text data to make it suitable for analysis. Common preprocessing steps include tokenization, removing stop words, and stemming or lemmatization;
  • Text classification: assigning categories or labels to text data. Sentiment analysis is one example, where the goal is to classify text as positive, negative, or neutral;
  • Named entity recognition (NER): identifying and classifying entities in text, such as names of people, organizations, locations, and dates;
  • Part-of-speech tagging: determining the grammatical structure of a sentence by identifying parts of speech like nouns, verbs, adjectives, etc.;
  • Sentiment analysis: the primary task of this section. Sentiment analysis involves determining the sentiment or emotion expressed in a piece of text. This is commonly used in analyzing social media posts, customer reviews, and feedback, and is typically performed using machine learning models trained on labeled data.

In sintesi, l'NLP è una tecnologia fondamentale che consente alle macchine di elaborare e comprendere il linguaggio umano. Apprendendo le basi dell'NLP, come il preprocessing del testo, la classificazione e gli embeddings, si pongono le basi per compiti più avanzati come l'analisi del sentiment e oltre.

question mark

Quale dei seguenti è un compito chiave nell'NLP?

Select the correct answer

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 1

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Awesome!

Completion rate improved to 4.55

bookNozioni di Base NLP

Scorri per mostrare il menu

NLP enables machines to read, understand, and generate human language. By applying various algorithms and models, NLP systems can perform tasks such as speech recognition, translation, summarization, and sentiment analysis.

Compiti principali nell'NLP:

  • Text preprocessing: involves cleaning the text data to make it suitable for analysis. Common preprocessing steps include tokenization, removing stop words, and stemming or lemmatization;
  • Text classification: assigning categories or labels to text data. Sentiment analysis is one example, where the goal is to classify text as positive, negative, or neutral;
  • Named entity recognition (NER): identifying and classifying entities in text, such as names of people, organizations, locations, and dates;
  • Part-of-speech tagging: determining the grammatical structure of a sentence by identifying parts of speech like nouns, verbs, adjectives, etc.;
  • Sentiment analysis: the primary task of this section. Sentiment analysis involves determining the sentiment or emotion expressed in a piece of text. This is commonly used in analyzing social media posts, customer reviews, and feedback, and is typically performed using machine learning models trained on labeled data.

In sintesi, l'NLP è una tecnologia fondamentale che consente alle macchine di elaborare e comprendere il linguaggio umano. Apprendendo le basi dell'NLP, come il preprocessing del testo, la classificazione e gli embeddings, si pongono le basi per compiti più avanzati come l'analisi del sentiment e oltre.

question mark

Quale dei seguenti è un compito chiave nell'NLP?

Select the correct answer

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 1
some-alt