How Much Do We Earn
You may recognize the column 'money_spent'
that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!
But firstly, recall some functions:
Group Data:
12df = df[['columns which we group']] .groupby(['columns on which we group'])
Visualization:
1234sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
Swipe to start coding
- Group data:
- Extract only columns
'day', 'money_spent'
from thedf
DataFrame. - Group by the column
'day'
. - Apply
.mean()
function to groupeddf
. - Apply
.reset_index()
function.
- Create a barplot:
- Use
df
as the first argument. - Use column
'day'
for x-axis. - Use the column
'money_spent'
for the y-axis.
- Output barplot.
Soluzione
Grazie per i tuoi commenti!
single
Chieda ad AI
Chieda ad AI
Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione
Awesome!
Completion rate improved to 2.08
How Much Do We Earn
Scorri per mostrare il menu
You may recognize the column 'money_spent'
that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!
But firstly, recall some functions:
Group Data:
12df = df[['columns which we group']] .groupby(['columns on which we group'])
Visualization:
1234sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
Swipe to start coding
- Group data:
- Extract only columns
'day', 'money_spent'
from thedf
DataFrame. - Group by the column
'day'
. - Apply
.mean()
function to groupeddf
. - Apply
.reset_index()
function.
- Create a barplot:
- Use
df
as the first argument. - Use column
'day'
for x-axis. - Use the column
'money_spent'
for the y-axis.
- Output barplot.
Soluzione
Grazie per i tuoi commenti!
Awesome!
Completion rate improved to 2.08single