Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Automate Portfolio Metrics Calculation | Advanced Analysis and Automation for Investors
Python for Investors

bookChallenge: Automate Portfolio Metrics Calculation

Compito

Swipe to start coding

You are given a DataFrame of daily closing prices for several assets and a list of portfolio weights. Your task is to automate the calculation of three key portfolio metrics:

  • Calculate the expected annual return of the portfolio (assume 252 trading days in a year);
  • Calculate the annualized volatility (standard deviation) of the portfolio;
  • Calculate the Sharpe Ratio of the portfolio (assume the risk-free rate is 0).

Implement the function calculate_portfolio_metrics(prices_df, weights) to return a dictionary with keys 'expected_annual_return', 'annual_volatility', and 'sharpe_ratio', each mapped to the corresponding float value.

Use only the allowed libraries. The function will be tested with different price data and weights.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 3
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

bookChallenge: Automate Portfolio Metrics Calculation

Scorri per mostrare il menu

Compito

Swipe to start coding

You are given a DataFrame of daily closing prices for several assets and a list of portfolio weights. Your task is to automate the calculation of three key portfolio metrics:

  • Calculate the expected annual return of the portfolio (assume 252 trading days in a year);
  • Calculate the annualized volatility (standard deviation) of the portfolio;
  • Calculate the Sharpe Ratio of the portfolio (assume the risk-free rate is 0).

Implement the function calculate_portfolio_metrics(prices_df, weights) to return a dictionary with keys 'expected_annual_return', 'annual_volatility', and 'sharpe_ratio', each mapped to the corresponding float value.

Use only the allowed libraries. The function will be tested with different price data and weights.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 3
single

single

some-alt