Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge 5: Hyperparameter Tuning | Scikit-learn
Data Science Interview Challenge

Scorri per mostrare il menu

book
Challenge 5: Hyperparameter Tuning

Hyperparameter tuning involves adjusting the parameters of an algorithm to optimize its performance. Unlike model parameters, which the algorithm learns on its own during training, hyperparameters are external configurations preset before the learning process begins. The primary purpose of hyperparameter tuning is to find the optimal combination of hyperparameters that minimizes a predefined loss function or maximizes accuracy, ensuring that the model neither underfits nor overfits the data.

Compito

Swipe to start coding

Perform hyperparameter tuning on a RandomForest classifier to predict wine types based on their chemical properties using GridSearchCV and RandomizedSearchCV.

  1. Define a parameter grid to search through. The number of trees should be iterating over the list [10, 20, 30], and the maximum depth of them should be iterating over [5, 10, 20].
  2. Use GridSearchCV to find the best hyperparameters for the RandomForest classifier with 3 folds of data.
  3. Do the same for RandomizedSearchCV for 5 random sets of parameters.
  4. Compare the results of both search methods.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 7. Capitolo 5

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Challenge 5: Hyperparameter Tuning

Hyperparameter tuning involves adjusting the parameters of an algorithm to optimize its performance. Unlike model parameters, which the algorithm learns on its own during training, hyperparameters are external configurations preset before the learning process begins. The primary purpose of hyperparameter tuning is to find the optimal combination of hyperparameters that minimizes a predefined loss function or maximizes accuracy, ensuring that the model neither underfits nor overfits the data.

Compito

Swipe to start coding

Perform hyperparameter tuning on a RandomForest classifier to predict wine types based on their chemical properties using GridSearchCV and RandomizedSearchCV.

  1. Define a parameter grid to search through. The number of trees should be iterating over the list [10, 20, 30], and the maximum depth of them should be iterating over [5, 10, 20].
  2. Use GridSearchCV to find the best hyperparameters for the RandomForest classifier with 3 folds of data.
  3. Do the same for RandomizedSearchCV for 5 random sets of parameters.
  4. Compare the results of both search methods.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 7. Capitolo 5
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt