Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Solving Task Using XGBoost | Commonly Used Boosting Models
Ensemble Learning

Scorri per mostrare il menu

book
Challenge: Solving Task Using XGBoost

Compito

Swipe to start coding

The "Credit Scoring" dataset is commonly used for credit risk analysis and binary classification tasks. It contains information about customers and their credit applications, with the goal of predicting whether a customer's credit application will result in a good or bad credit outcome.

Your task is to solve classification task on "Credit Scoring" dataset:

  1. Create Dmatrix objects using training and test data. Specify enable_categorical argument to use categorical features.
  2. Train the XGBoost model using the training DMatrix object.
  3. Set the split threshold to 0.5 for correct class detection.

Note

'objective': 'binary:logistic' parameter means that we will use logistic loss (also known as binary cross-entropy loss) as an objective function when training the XGBoost model.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 6
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Challenge: Solving Task Using XGBoost

Compito

Swipe to start coding

The "Credit Scoring" dataset is commonly used for credit risk analysis and binary classification tasks. It contains information about customers and their credit applications, with the goal of predicting whether a customer's credit application will result in a good or bad credit outcome.

Your task is to solve classification task on "Credit Scoring" dataset:

  1. Create Dmatrix objects using training and test data. Specify enable_categorical argument to use categorical features.
  2. Train the XGBoost model using the training DMatrix object.
  3. Set the split threshold to 0.5 for correct class detection.

Note

'objective': 'binary:logistic' parameter means that we will use logistic loss (also known as binary cross-entropy loss) as an objective function when training the XGBoost model.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 6
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt