Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Random Forest | Bagging and Random Forests
Ensemble Learning Techniques with Python

bookChallenge: Random Forest

Compito

Swipe to start coding

Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:

  1. Load the dataset using sklearn.datasets.load_iris().
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train a RandomForestClassifier with:
    • n_estimators=100,
    • max_depth=4,
    • random_state=42.
  4. Predict labels on the test set.
  5. Compute and print the accuracy score of your model.
  6. Store the trained model in a variable named rf_model and predictions in y_pred.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Random Forest

Scorri per mostrare il menu

Compito

Swipe to start coding

Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:

  1. Load the dataset using sklearn.datasets.load_iris().
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train a RandomForestClassifier with:
    • n_estimators=100,
    • max_depth=4,
    • random_state=42.
  4. Predict labels on the test set.
  5. Compute and print the accuracy score of your model.
  6. Store the trained model in a variable named rf_model and predictions in y_pred.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

some-alt