Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Tuning Hyperparameters with RandomizedSearchCV | Modeling
ML Introduction with scikit-learn
course content

Contenuti del Corso

ML Introduction with scikit-learn

ML Introduction with scikit-learn

1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
3. Pipelines
4. Modeling

book
Challenge: Tuning Hyperparameters with RandomizedSearchCV

The idea behind RandomizedSearchCV is that it works the same as GridSearchCV, but instead of trying all the combinations, it tries a randomly sampled subset.

For example, this param_grid will have 100 combinations:

python

The GridSearchCV would try all of them, which is time-consuming. With RandomizedSearchCV, you can try only a randomly chosen subset of, say, 20 combinations. It usually leads to a little worse result, but works much faster.

You can control the number of combinations to be tested using the n_iter argument (set to 10 by default). Apart from that, working with it is the same as with GridSearchCV.

Compito

Swipe to start coding

Your task is to build GridSearchCV and RandomizedSearchCV with 20 combinations and compare the results.

  1. Initialize the RandomizedSearchCV object. Pass the parameters grid and set the number of combinations to 20.
  2. Initialize the GridSearchCV object.
  3. Train both GridSearchCV and RandomizedSearchCV objects.
  4. Print the best estimator of grid.
  5. Print the best score of randomized.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 8
toggle bottom row

book
Challenge: Tuning Hyperparameters with RandomizedSearchCV

The idea behind RandomizedSearchCV is that it works the same as GridSearchCV, but instead of trying all the combinations, it tries a randomly sampled subset.

For example, this param_grid will have 100 combinations:

python

The GridSearchCV would try all of them, which is time-consuming. With RandomizedSearchCV, you can try only a randomly chosen subset of, say, 20 combinations. It usually leads to a little worse result, but works much faster.

You can control the number of combinations to be tested using the n_iter argument (set to 10 by default). Apart from that, working with it is the same as with GridSearchCV.

Compito

Swipe to start coding

Your task is to build GridSearchCV and RandomizedSearchCV with 20 combinations and compare the results.

  1. Initialize the RandomizedSearchCV object. Pass the parameters grid and set the number of combinations to 20.
  2. Initialize the GridSearchCV object.
  3. Train both GridSearchCV and RandomizedSearchCV objects.
  4. Print the best estimator of grid.
  5. Print the best score of randomized.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 8
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt