Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Putting It All Together | Modeling
ML Introduction with scikit-learn
course content

Contenuti del Corso

ML Introduction with scikit-learn

ML Introduction with scikit-learn

1. Machine Learning Concepts
2. Preprocessing Data with Scikit-learn
3. Pipelines
4. Modeling

book
Challenge: Putting It All Together

In this challenge, you will apply everything you learned throughout the course from data preprocessing to training and evaluating the model.

carousel-imgcarousel-imgcarousel-imgcarousel-imgcarousel-img
Compito

Swipe to start coding

  1. Encode the target.
  2. Split the data so that 33% is used for the test set and the remainder for the training set.
  3. Make a ColumnTransformer to encode only the 'island' and 'sex' columns. Make sure the others columns remain untouched. Use a proper encoder for nominal data.
  4. Fill the gaps in a param_grid to try the following values for the number of neighbors: [1, 3, 5, 7, 9, 12, 15, 20, 25].
  5. Create a GridSearchCV object with the KNeighborsClassifier as a model.
  6. Construct a pipeline that begins with ct as the first step, followed by imputation using the most frequent value, standardization, and concludes with GridSearchCV as the final estimator.
  7. Train the model using a pipeline on the training set.
  8. Evaluate the model on the test set. (Print its score)
  9. Get a predicted target for X_test.
  10. Print the best estimator found by grid_search.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 10
toggle bottom row

book
Challenge: Putting It All Together

In this challenge, you will apply everything you learned throughout the course from data preprocessing to training and evaluating the model.

carousel-imgcarousel-imgcarousel-imgcarousel-imgcarousel-img
Compito

Swipe to start coding

  1. Encode the target.
  2. Split the data so that 33% is used for the test set and the remainder for the training set.
  3. Make a ColumnTransformer to encode only the 'island' and 'sex' columns. Make sure the others columns remain untouched. Use a proper encoder for nominal data.
  4. Fill the gaps in a param_grid to try the following values for the number of neighbors: [1, 3, 5, 7, 9, 12, 15, 20, 25].
  5. Create a GridSearchCV object with the KNeighborsClassifier as a model.
  6. Construct a pipeline that begins with ct as the first step, followed by imputation using the most frequent value, standardization, and concludes with GridSearchCV as the final estimator.
  7. Train the model using a pipeline on the training set.
  8. Evaluate the model on the test set. (Print its score)
  9. Get a predicted target for X_test.
  10. Print the best estimator found by grid_search.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 10
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt