Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: FP-growth Implementation | Mining Frequent Itemsets
Association Rule Mining
course content

Contenuti del Corso

Association Rule Mining

Association Rule Mining

1. Introduction to Association Rule Mining
2. Mining Frequent Itemsets
3. Additional Applications of ARM

book
Challenge: FP-growth Implementation

Compito

Swipe to start coding

FP-growth algorithm can be easily implemented using the mlxtend library.
You need to use fpgrowth(encoded_data, min_support) function to get frequent itemsets on the generated dataset. Use 0.05 as a minimum support value.

Note

Pay attention that we have to one-hot-encode the transaction dataset to use the FP-growth algorithm in this task.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 6
toggle bottom row

book
Challenge: FP-growth Implementation

Compito

Swipe to start coding

FP-growth algorithm can be easily implemented using the mlxtend library.
You need to use fpgrowth(encoded_data, min_support) function to get frequent itemsets on the generated dataset. Use 0.05 as a minimum support value.

Note

Pay attention that we have to one-hot-encode the transaction dataset to use the FP-growth algorithm in this task.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 6
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt