Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Standard Deviation with Python | Variance and Standard Deviation
Learning Statistics with Python

book
Standard Deviation with Python

The first function is from numpy, and the second method is from pandas. Take a look at the example of calculating the standard deviation for the work_year:

import pandas as pd
import numpy as np

df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/update/ds_salaries_statistics', index_col = 0)

# Calculate the standard deviation using the function from the NumPy library
std_1 = np.std(df['salary_in_usd'])
# Calculate the standard deviation using the function from the pandas library
std_2 = df['salary_in_usd'].std()

print('The standard deviation using NumPy library is', round(std_1, 2))
print('The standard deviation using pandas library is', round(std_2, 2))
123456789101112
import pandas as pd import numpy as np df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/update/ds_salaries_statistics', index_col = 0) # Calculate the standard deviation using the function from the NumPy library std_1 = np.std(df['salary_in_usd']) # Calculate the standard deviation using the function from the pandas library std_2 = df['salary_in_usd'].std() print('The standard deviation using NumPy library is', round(std_1, 2)) print('The standard deviation using pandas library is', round(std_2, 2))
copy
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 5
some-alt