Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Paired t-test | Statistical Testing
Learning Statistics with Python

book
Paired t-test

The following function conducts a paired t-test:

python
ttest_rel(a, b, alternative='two-sided')

This process resembles the one used for independent samples, but here we do not need to check the homogeneity of variance. The paired t-test explicitly does not assume that variances are equal.

Keep in mind that for a paired t-test, it's crucial that the sample sizes are equal.

With this information in mind, you can proceed to the task of conducting a paired t-test.

Here, you have data regarding the number of downloads for a particular app. Take a look at the samples: the mean values are nearly identical.

import pandas as pd
import matplotlib.pyplot as plt

# Read the data
before = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/before.csv').squeeze()
after = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/after.csv').squeeze()
# Plot histograms
plt.hist(before, alpha=0.7)
plt.hist(after, alpha=0.7)
# Plot the means
plt.axvline(before.mean(), color='blue', linestyle='dashed')
plt.axvline(after.mean(), color='gold', linestyle='dashed')
123456789101112
import pandas as pd import matplotlib.pyplot as plt # Read the data before = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/before.csv').squeeze() after = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/after.csv').squeeze() # Plot histograms plt.hist(before, alpha=0.7) plt.hist(after, alpha=0.7) # Plot the means plt.axvline(before.mean(), color='blue', linestyle='dashed') plt.axvline(after.mean(), color='gold', linestyle='dashed')
copy
Compito

Swipe to start coding

Hypotheses are established:

  • H₀: The mean number of downloads before and after the changes is the same;
  • Hₐ: The mean number of downloads is greater after the modifications.

Conduct a paired t-test with this alternative hypothesis, using before and after as the samples.

Soluzione

import scipy.stats as st
import pandas as pd

before = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/before.csv').squeeze()
after = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/after.csv').squeeze()

stats, pvalue = st.ttest_rel(after, before, alternative='greater')
# Check the null hypothesis
if pvalue > 0.05:
print("We support the null hypothesis, the mean values are equal")
# Check the alternative hypothesis
else:
print("We reject the null hypothesis, the mean values are different")
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 6. Capitolo 8
import scipy.stats as st
import pandas as pd

before = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/before.csv').squeeze()
after = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/after.csv').squeeze()

stats, pvalue = ___(___)
# Check the null hypothesis
if pvalue > 0.05:
print("We support the null hypothesis, the mean values are equal")
# Check the alternative hypothesis
else:
print("We reject the null hypothesis, the mean values are different")

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

We use cookies to make your experience better!
some-alt