Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Predict House Prices | Simple Linear Regression
Linear Regression with Python

Scorri per mostrare il menu

book
Predict House Prices

Let's build a real-world example regression model. We have a file, houses_simple.csv, that holds information about housing prices with its area as a feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') print(df.head())
copy

Let's assign variables and visualize our dataset!

123456789
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') X = df['square_feet'] y = df['price'] plt.scatter(X, y, alpha=0.5) plt.show()
copy

In the example with a person's height, it was much easier to imagine a line fitting the data well.
But now our data has much more variance since the target highly depends on many other things like age, location, interior, etc.
Anyway, the task is to build the line that best fits the data we have; it will show the trend. The OLS class should be used for that. Soon we will learn how to add more features, it will make the prediction better!

Compito

Swipe to start coding

  1. Assign the 'price' column of df to y.
  2. Create the X_tilde matrix using the add_constant() function from statsmodels(imported as sm).
  3. Initialize the OLS object and train it.
  4. Preprocess X_new array the same way as X.
  5. Predict the target for X_new_tilde matrix.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 5
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Predict House Prices

Let's build a real-world example regression model. We have a file, houses_simple.csv, that holds information about housing prices with its area as a feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') print(df.head())
copy

Let's assign variables and visualize our dataset!

123456789
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') X = df['square_feet'] y = df['price'] plt.scatter(X, y, alpha=0.5) plt.show()
copy

In the example with a person's height, it was much easier to imagine a line fitting the data well.
But now our data has much more variance since the target highly depends on many other things like age, location, interior, etc.
Anyway, the task is to build the line that best fits the data we have; it will show the trend. The OLS class should be used for that. Soon we will learn how to add more features, it will make the prediction better!

Compito

Swipe to start coding

  1. Assign the 'price' column of df to y.
  2. Create the X_tilde matrix using the add_constant() function from statsmodels(imported as sm).
  3. Initialize the OLS object and train it.
  4. Preprocess X_new array the same way as X.
  5. Predict the target for X_new_tilde matrix.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 5
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt