Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Implementing a Random Forest | Random Forest
Classification with Python
course content

Contenuti del Corso

Classification with Python

Classification with Python

1. k-NN Classifier
2. Logistic Regression
3. Decision Tree
4. Random Forest
5. Comparing Models

book
Challenge: Implementing a Random Forest

In this chapter, you will build a Random Forest using the same titanic dataset.

Also, you will calculate the cross-validation accuracy using the cross_val_score() function

In the end, you will print the feature importances.
The feature_importances_ attribute only holds an array with importances without specifying the name of a feature.
To print the pairs ('name', importance), you can use the following syntax:

python
Compito

Swipe to start coding

  1. Import the RandomForestClassifier class.
  2. Create an instance of a RandomForestClassifier class with default parameters and train it.
  3. Print the cross-validation score with the cv=10 of a random_forest you just built.
  4. Print each feature's importance along with its name.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 3
toggle bottom row

book
Challenge: Implementing a Random Forest

In this chapter, you will build a Random Forest using the same titanic dataset.

Also, you will calculate the cross-validation accuracy using the cross_val_score() function

In the end, you will print the feature importances.
The feature_importances_ attribute only holds an array with importances without specifying the name of a feature.
To print the pairs ('name', importance), you can use the following syntax:

python
Compito

Swipe to start coding

  1. Import the RandomForestClassifier class.
  2. Create an instance of a RandomForestClassifier class with default parameters and train it.
  3. Print the cross-validation score with the cv=10 of a random_forest you just built.
  4. Print each feature's importance along with its name.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 3
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt