Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Solving the Task Using Geometric Probability | Basic Concepts of Probability Theory
Probability Theory Basics
course content

Contenuti del Corso

Probability Theory Basics

Probability Theory Basics

1. Basic Concepts of Probability Theory
2. Probability of Complex Events
3. Commonly Used Discrete Distributions
4. Commonly Used Continuous Distributions
5. Covariance and Correlation

book
Challenge: Solving the Task Using Geometric Probability

Consider a square with a side length of 2 units centered at the origin (0, 0) in a Cartesian coordinate system.
What is the probability that a randomly chosen point within the square doesn't fall into a circle with a radius of 1 unit centered at the origin?
As we have a two-dimensional space of elementary events, we can calculate the ratio of the circle's area to the square's area. The ratio represents the probability of a point falling within the circle.

Compito

Swipe to start coding

Calculate probability as the ratio between the blue area and the whole area of the square.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 4
toggle bottom row

book
Challenge: Solving the Task Using Geometric Probability

Consider a square with a side length of 2 units centered at the origin (0, 0) in a Cartesian coordinate system.
What is the probability that a randomly chosen point within the square doesn't fall into a circle with a radius of 1 unit centered at the origin?
As we have a two-dimensional space of elementary events, we can calculate the ratio of the circle's area to the square's area. The ratio represents the probability of a point falling within the circle.

Compito

Swipe to start coding

Calculate probability as the ratio between the blue area and the whole area of the square.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 4
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt