Challenge: Solving the Task Using Geometric Probability
Consider a square with a side length of 2
units centered at the origin (0, 0)
in a Cartesian coordinate system.
What is the probability that a randomly chosen point within the square doesn't fall into a circle with a radius of 1
unit centered at the origin?
As we have a two-dimensional space of elementary events, we can calculate the ratio of the circle's area to the square's area. The ratio represents the probability of a point falling within the circle.
Swipe to start coding
Calculate probability as the ratio between the blue area and the whole area of the square.
Soluzione
Grazie per i tuoi commenti!
single
Chieda ad AI
Chieda ad AI
Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione
Awesome!
Completion rate improved to 3.85
Challenge: Solving the Task Using Geometric Probability
Scorri per mostrare il menu
Consider a square with a side length of 2
units centered at the origin (0, 0)
in a Cartesian coordinate system.
What is the probability that a randomly chosen point within the square doesn't fall into a circle with a radius of 1
unit centered at the origin?
As we have a two-dimensional space of elementary events, we can calculate the ratio of the circle's area to the square's area. The ratio represents the probability of a point falling within the circle.
Swipe to start coding
Calculate probability as the ratio between the blue area and the whole area of the square.
Soluzione
Grazie per i tuoi commenti!
Awesome!
Completion rate improved to 3.85single