Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: L2 Normalization and Norm Comparison | Normalization Techniques
Feature Scaling and Normalization Deep Dive

bookChallenge: L2 Normalization and Norm Comparison

Compito

Swipe to start coding

You are given a NumPy array X of shape (n_samples, n_features). Your goal is to L2-normalize each row (sample) and compare norms before and after normalization using np.linalg.norm.

  1. Compute row-wise L2 norms as a column vector row_norms with shape (n_samples, 1) using np.linalg.norm(..., axis=1, keepdims=True).
  2. Create X_l2 by dividing each row of X by its L2 norm via broadcasting.
  3. Compute norms_before and norms_after as 1D arrays (shape (n_samples,)) with np.linalg.norm(..., axis=1).
  4. Assume there are no zero rows in X. Do not modify X in place. Use vectorized NumPy operations.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you explain this in simpler terms?

What are the next steps I should take?

Can you provide an example?

close

Awesome!

Completion rate improved to 5.26

bookChallenge: L2 Normalization and Norm Comparison

Scorri per mostrare il menu

Compito

Swipe to start coding

You are given a NumPy array X of shape (n_samples, n_features). Your goal is to L2-normalize each row (sample) and compare norms before and after normalization using np.linalg.norm.

  1. Compute row-wise L2 norms as a column vector row_norms with shape (n_samples, 1) using np.linalg.norm(..., axis=1, keepdims=True).
  2. Create X_l2 by dividing each row of X by its L2 norm via broadcasting.
  3. Compute norms_before and norms_after as 1D arrays (shape (n_samples,)) with np.linalg.norm(..., axis=1).
  4. Assume there are no zero rows in X. Do not modify X in place. Use vectorized NumPy operations.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

some-alt