Preliminary Analysis
Preliminary analysis involves initial exploration and understanding of data to identify patterns, trends, or anomalies. It serves as a foundation for more in-depth analysis and decision-making in various domains such as business, research, and data science.
Methods description
print
: This is a built-in Python function used to display the value of an expression. It prints the specified message or variable to the standard output (usually the console);shape
: This is a method available in data structures like Pandas DataFrame or NumPy array. It returns a tuple representing the dimensions of the data structure, often in the format (rows, columns). In this context, it prints the shape of the data, i.e., the number of rows and columns;isnull()
: This is a method available in Pandas DataFrame which returns a boolean DataFrame indicating whether each element in the DataFrame is NaN (missing) or not;sum()
: This is a method available in Pandas DataFrame which returns the sum of values for the requested axis. When used afterisnull()
, it computes the sum of missing values along the specified axis (usually axis=0 for columns). In this context, it prints the total number of missing values in each column.
Swipe to start coding
- Print the
shape
of your data. - Check for any
NaN
value.
Soluzione
Grazie per i tuoi commenti!
Chieda ad AI
Chieda ad AI
Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione
Mi faccia domande su questo argomento
Riassuma questo capitolo
Mostri esempi dal mondo reale
Awesome!
Completion rate improved to 9.09
Preliminary Analysis
Preliminary analysis involves initial exploration and understanding of data to identify patterns, trends, or anomalies. It serves as a foundation for more in-depth analysis and decision-making in various domains such as business, research, and data science.
Methods description
print
: This is a built-in Python function used to display the value of an expression. It prints the specified message or variable to the standard output (usually the console);shape
: This is a method available in data structures like Pandas DataFrame or NumPy array. It returns a tuple representing the dimensions of the data structure, often in the format (rows, columns). In this context, it prints the shape of the data, i.e., the number of rows and columns;isnull()
: This is a method available in Pandas DataFrame which returns a boolean DataFrame indicating whether each element in the DataFrame is NaN (missing) or not;sum()
: This is a method available in Pandas DataFrame which returns the sum of values for the requested axis. When used afterisnull()
, it computes the sum of missing values along the specified axis (usually axis=0 for columns). In this context, it prints the total number of missing values in each column.
Swipe to start coding
- Print the
shape
of your data. - Check for any
NaN
value.
Soluzione
Grazie per i tuoi commenti!