Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Checking Bias of An Estimation Using Simulation | Estimation of Population Parameters
Advanced Probability Theory

Scorri per mostrare il menu

book
Challenge: Checking Bias of An Estimation Using Simulation

In the last chapter, we covered the concepts of sample variance and adjusted sample variance. Now let's see how with the help of simulation, we can determine that the first estimation is biased and the second is unbiased.

We will use the Gaussian population: we will build an estimate of the sample variance and the adjusted sample variance on different subsets of the population. Next, using the law of large numbers, we will estimate the mean of the sample variance and the adjusted sample variance and compare it with the real variance of the population.

Compito

Swipe to start coding

Your task is to perform simulations to obtain the value of the sample variance, and the adjusted sample variance for 2000 different subsets of the population and compare the mean of the sample variance and the adjusted sample variance with the real value of the population mean:

  1. Use ddof=0 as an argument of np.var() method to calculate sample variance.
  2. Use ddof=1 as an argument of np.var() method to calculate the adjusted sample variance.
  3. Use .mean() method to estimate the expectation of sample variance.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 5

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Challenge: Checking Bias of An Estimation Using Simulation

In the last chapter, we covered the concepts of sample variance and adjusted sample variance. Now let's see how with the help of simulation, we can determine that the first estimation is biased and the second is unbiased.

We will use the Gaussian population: we will build an estimate of the sample variance and the adjusted sample variance on different subsets of the population. Next, using the law of large numbers, we will estimate the mean of the sample variance and the adjusted sample variance and compare it with the real variance of the population.

Compito

Swipe to start coding

Your task is to perform simulations to obtain the value of the sample variance, and the adjusted sample variance for 2000 different subsets of the population and compare the mean of the sample variance and the adjusted sample variance with the real value of the population mean:

  1. Use ddof=0 as an argument of np.var() method to calculate sample variance.
  2. Use ddof=1 as an argument of np.var() method to calculate the adjusted sample variance.
  3. Use .mean() method to estimate the expectation of sample variance.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 5
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt