Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Feature Selection Pipeline | Feature Selection Strategies
Feature Selection and Regularization Techniques

bookChallenge: Feature Selection Pipeline

Compito

Swipe to start coding

You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.

Follow these steps:

  1. Load the dataset using load_diabetes().
  2. Split it into train/test sets (test_size=0.3, random_state=42).
  3. Build a pipeline with:
    • StandardScaler().
    • SelectFromModel(Lasso(alpha=0.01, random_state=42)) for automatic feature selection.
    • LinearRegression() as the final model.
  4. Fit the pipeline and evaluate it using R² score on the test set.
  5. Print:
    • The R² score (rounded to 3 decimals).
    • The number of features selected.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Feature Selection Pipeline

Scorri per mostrare il menu

Compito

Swipe to start coding

You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.

Follow these steps:

  1. Load the dataset using load_diabetes().
  2. Split it into train/test sets (test_size=0.3, random_state=42).
  3. Build a pipeline with:
    • StandardScaler().
    • SelectFromModel(Lasso(alpha=0.01, random_state=42)) for automatic feature selection.
    • LinearRegression() as the final model.
  4. Fit the pipeline and evaluate it using R² score on the test set.
  5. Print:
    • The R² score (rounded to 3 decimals).
    • The number of features selected.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 4
single

single

some-alt