Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Build the Linear Regression | What is the Linear Regression?
Explore the Linear Regression Using Python

Scorri per mostrare il menu

book
Build the Linear Regression

Here we will learn how to find the intercept and slope for our dataset. For this example, we will use a scientific computation library SciPy, to import stats. Using the method stats.lingress() we can get the most important linear regression parameters for the given dataset (x and y arrays). Pay attention to the first two values (slope and intercept), and other parameters will be analyzed in the following chapters. These two numbers define a straight line. The squares of the residuals of the dataset to points are minimal.

123456789101112131415161718192021222324252627
# Import the libraries import matplotlib.pyplot as plt from scipy import stats # Initialize the data x = [8, 10, 9.2, 8.4, 9.1, 9.6, 8, 10.2, 9.3, 9.4, 9.9, 8.7] y = [3.6, 5.4, 4.8, 3.9, 4.2, 5.2, 3.5, 5.5, 4.4, 4.7, 5.1, 3.7] # Get the linear regression parameters slope, intercept, r, p, std_err = stats.linregress(x, y) # The line shows the dependence of the height of cats on their weight def on_weight(x): return slope * x + intercept # Define the line height_on_weight = list(map(on_weight, x)) # Add titles to axes ax = plt.gca() ax.set_xlabel('Cat height (inches)') ax.set_ylabel('Cat weight (kg)') # Visualize our data plt.scatter(x, y) plt.plot(x, height_on_weight) plt.show()
copy

The output of the code execution is identical to your first task. However, now we don't work with predefined values but with a method that returns them to us knowing the dataset.

Compito

Swipe to start coding

Getting bigger, cats start to eat more. Let's see how these values are dependent. We have a dataset in which the number of calories the cat eats every day at a certain weight is indicated (array x - weight, y - number of calories).

  1. [Lines #2-3] Import the matplotlib.pyplotand also the library SciPy.
  2. [Lines #10-17] Find the slope and the intercept using the method stats.lingress(). Add the missing parameter to the function on_weight and assign the variable feed_on_weight.
  3. [Lines #26-27] Build line on your plot.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 3
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Build the Linear Regression

Here we will learn how to find the intercept and slope for our dataset. For this example, we will use a scientific computation library SciPy, to import stats. Using the method stats.lingress() we can get the most important linear regression parameters for the given dataset (x and y arrays). Pay attention to the first two values (slope and intercept), and other parameters will be analyzed in the following chapters. These two numbers define a straight line. The squares of the residuals of the dataset to points are minimal.

123456789101112131415161718192021222324252627
# Import the libraries import matplotlib.pyplot as plt from scipy import stats # Initialize the data x = [8, 10, 9.2, 8.4, 9.1, 9.6, 8, 10.2, 9.3, 9.4, 9.9, 8.7] y = [3.6, 5.4, 4.8, 3.9, 4.2, 5.2, 3.5, 5.5, 4.4, 4.7, 5.1, 3.7] # Get the linear regression parameters slope, intercept, r, p, std_err = stats.linregress(x, y) # The line shows the dependence of the height of cats on their weight def on_weight(x): return slope * x + intercept # Define the line height_on_weight = list(map(on_weight, x)) # Add titles to axes ax = plt.gca() ax.set_xlabel('Cat height (inches)') ax.set_ylabel('Cat weight (kg)') # Visualize our data plt.scatter(x, y) plt.plot(x, height_on_weight) plt.show()
copy

The output of the code execution is identical to your first task. However, now we don't work with predefined values but with a method that returns them to us knowing the dataset.

Compito

Swipe to start coding

Getting bigger, cats start to eat more. Let's see how these values are dependent. We have a dataset in which the number of calories the cat eats every day at a certain weight is indicated (array x - weight, y - number of calories).

  1. [Lines #2-3] Import the matplotlib.pyplotand also the library SciPy.
  2. [Lines #10-17] Find the slope and the intercept using the method stats.lingress(). Add the missing parameter to the function on_weight and assign the variable feed_on_weight.
  3. [Lines #26-27] Build line on your plot.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 3
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt