Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Forward Propagation | Neural Network from Scratch
Introduction to Neural Networks
course content

Contenuti del Corso

Introduction to Neural Networks

Introduction to Neural Networks

1. Concept of Neural Network
2. Neural Network from Scratch
3. Conclusion

book
Forward Propagation

You have already implemented forward propagation for a single layer in the previous chapter. Now, the goal is to implement complete forward propagation, from inputs to outputs.

To implement the entire forward propagation process, you need to define the forward() method in the Perceptron class. This method performs forward propagation layer by layer by calling the respective method for each layer:

python

The inputs pass through the first hidden layer, with each layer's outputs serving as inputs for the next, until reaching the final layer to produce the final output.

Compito

Swipe to start coding

Your goal is to implement forward propagation for the perceptron:

  1. Iterate over the layers of the perceptron.
  2. Pass x through each layer in the network sequentially.
  3. Return the final output after all layers have processed the input.

If the forward() method is implemented correctly, the perceptron should output a single number between 0 and 1 when given certain inputs (e.g, [1, 0]).

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 5
toggle bottom row

book
Forward Propagation

You have already implemented forward propagation for a single layer in the previous chapter. Now, the goal is to implement complete forward propagation, from inputs to outputs.

To implement the entire forward propagation process, you need to define the forward() method in the Perceptron class. This method performs forward propagation layer by layer by calling the respective method for each layer:

python

The inputs pass through the first hidden layer, with each layer's outputs serving as inputs for the next, until reaching the final layer to produce the final output.

Compito

Swipe to start coding

Your goal is to implement forward propagation for the perceptron:

  1. Iterate over the layers of the perceptron.
  2. Pass x through each layer in the network sequentially.
  3. Return the final output after all layers have processed the input.

If the forward() method is implemented correctly, the perceptron should output a single number between 0 and 1 when given certain inputs (e.g, [1, 0]).

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 5
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt