Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: ODE Solver Accuracy and Stability | Differential Equations and Dynamic Systems
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Numerical Methods for Scientific Computing with Python

bookChallenge: ODE Solver Accuracy and Stability

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Compito

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you show me how to implement the Euler method for this ODE?

Can you explain how the RK4 method works for this problem?

How do the numerical solutions compare to the analytical solution?

close

bookChallenge: ODE Solver Accuracy and Stability

Scorri per mostrare il menu

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Compito

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 4
single

single

some-alt