Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Classification Metrics | Classification Metrics
Evaluation Metrics in Machine Learning

bookChallenge: Classification Metrics

Compito

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 7
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you explain this in simpler terms?

What are the main benefits or drawbacks?

Can you give me a real-world example?

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Classification Metrics

Scorri per mostrare il menu

Compito

Swipe to start coding

You are given a simple binary classification dataset. Your task is to:

  1. Train a Logistic Regression model using scikit-learn.

  2. Evaluate it with the following metrics:

    • Accuracy.
    • Precision.
    • Recall.
    • F1 Score.
    • ROC–AUC Score.
    • Confusion Matrix.
  3. Perform 5-fold cross-validation and report the mean accuracy.

Finally, print all results clearly formatted, as shown below.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 7
single

single

some-alt