Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Mahalanobis Distance in Practice | Statistical and Distance-Based Methods
Outlier and Novelty Detection in Practice

bookChallenge: Mahalanobis Distance in Practice

Oppgave

Swipe to start coding

You are given a small 2D dataset. Your goal is to compute the Mahalanobis distance of each observation from the data center and use it to detect outliers.

Steps:

  1. Compute the mean vector of the dataset.
  2. Compute the covariance matrix and its inverse.
  3. For each observation, compute Mahalanobis distance using the formula:

[ D(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)} ] 4. Store all distances in an array distances. 5. Classify points as outliers if distance > threshold (use threshold = 2.5). 6. Print both arrays (distances and outliers) for verification.

Use NumPy only.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you give me a real-world example?

close

Awesome!

Completion rate improved to 4.55

bookChallenge: Mahalanobis Distance in Practice

Sveip for å vise menyen

Oppgave

Swipe to start coding

You are given a small 2D dataset. Your goal is to compute the Mahalanobis distance of each observation from the data center and use it to detect outliers.

Steps:

  1. Compute the mean vector of the dataset.
  2. Compute the covariance matrix and its inverse.
  3. For each observation, compute Mahalanobis distance using the formula:

[ D(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)} ] 4. Store all distances in an array distances. 5. Classify points as outliers if distance > threshold (use threshold = 2.5). 6. Print both arrays (distances and outliers) for verification.

Use NumPy only.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
single

single

some-alt