Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Comparing the Dynamics | K-Medoids Algorithm
Cluster Analysis in Python
course content

Kursinnhold

Cluster Analysis in Python

Cluster Analysis in Python

1. K-Means Algorithm
2. K-Medoids Algorithm
3. Hierarchical Clustering
4. Spectral Clustering

book
Comparing the Dynamics

That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.

Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.

Oppgave

Swipe to start coding

Visualize the monthly temperature dynamics across clusters. Follow the next steps:

  1. Import KMedoids function from sklearn_extra.cluster.
  2. Create a KMedoids object named model with 4 clusters.
  3. Fit the 3-15 columns (these are not indices, but positions) of data to model.
  4. Add the 'prediction' column to data with predicted by model labels.
  5. Calculate the monthly averages using data and save the result within the d DataFrame:
  • Group the observations by the 'prediction' column.
  • Calculate the mean values.
  • Stack the columns into indices (already done).
  • Reset the indices.
  1. Assign ['Group', 'Month', 'Temp'] as columns names of d.
  2. Build lineplot with 'Month' on the x-axis, 'Temp' on the y-axis for each 'Group' of d DataFrame (i.e. separate line and color for each 'Group').

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 6
toggle bottom row

book
Comparing the Dynamics

That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.

Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.

Oppgave

Swipe to start coding

Visualize the monthly temperature dynamics across clusters. Follow the next steps:

  1. Import KMedoids function from sklearn_extra.cluster.
  2. Create a KMedoids object named model with 4 clusters.
  3. Fit the 3-15 columns (these are not indices, but positions) of data to model.
  4. Add the 'prediction' column to data with predicted by model labels.
  5. Calculate the monthly averages using data and save the result within the d DataFrame:
  • Group the observations by the 'prediction' column.
  • Calculate the mean values.
  • Stack the columns into indices (already done).
  • Reset the indices.
  1. Assign ['Group', 'Month', 'Temp'] as columns names of d.
  2. Build lineplot with 'Month' on the x-axis, 'Temp' on the y-axis for each 'Group' of d DataFrame (i.e. separate line and color for each 'Group').

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 6
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt