Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Initializing Model Weights and Biases | PyTorch Introduction
PyTorch Essentials
course content

Kursinnhold

PyTorch Essentials

PyTorch Essentials

1. PyTorch Introduction
2. More Advanced Concepts
3. Neural Networks in PyTorch

book
Challenge: Initializing Model Weights and Biases

Oppgave

Swipe to start coding

You are tasked with creating random tensors to initialize weights and biases for a simple neural network.

  1. Ensure reproducibility by setting a manual seed to an arbitrary number before generating the tensors.
  2. Create a 3x4 tensor filled with random values from a uniform distribution between 0 and 1 (weights for the first layer).
  3. Create a 1x4 tensor filled with zeros (biases for the first layer).
  4. Create a 4x2 tensor with random integers between -5 and 5 (weights for the second layer).

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 6
toggle bottom row

book
Challenge: Initializing Model Weights and Biases

Oppgave

Swipe to start coding

You are tasked with creating random tensors to initialize weights and biases for a simple neural network.

  1. Ensure reproducibility by setting a manual seed to an arbitrary number before generating the tensors.
  2. Create a 3x4 tensor filled with random values from a uniform distribution between 0 and 1 (weights for the first layer).
  3. Create a 1x4 tensor filled with zeros (biases for the first layer).
  4. Create a 4x2 tensor with random integers between -5 and 5 (weights for the second layer).

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 6
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt