Challenge: Boosting
Oppgave
Swipe to start coding
Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.
Follow these steps:
- Load the dataset using
load_breast_cancer()fromsklearn.datasets. - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train:
- An AdaBoostClassifier with:
base_estimator=DecisionTreeClassifier(max_depth=1)n_estimators=50,learning_rate=0.8
- A GradientBoostingClassifier with:
n_estimators=100,learning_rate=0.1,max_depth=3.
- An AdaBoostClassifier with:
- Evaluate both models on the test data using
accuracy_score. - Print both accuracies.
Løsning
Alt var klart?
Takk for tilbakemeldingene dine!
Seksjon 1. Kapittel 11
single
Spør AI
Spør AI
Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår
Fantastisk!
Completion rate forbedret til 7.14
Challenge: Boosting
Sveip for å vise menyen
Oppgave
Swipe to start coding
Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.
Follow these steps:
- Load the dataset using
load_breast_cancer()fromsklearn.datasets. - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train:
- An AdaBoostClassifier with:
base_estimator=DecisionTreeClassifier(max_depth=1)n_estimators=50,learning_rate=0.8
- A GradientBoostingClassifier with:
n_estimators=100,learning_rate=0.1,max_depth=3.
- An AdaBoostClassifier with:
- Evaluate both models on the test data using
accuracy_score. - Print both accuracies.
Løsning
Alt var klart?
Takk for tilbakemeldingene dine!
Seksjon 1. Kapittel 11
single