Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Euclidean Algorithm | Greedy Algorithms: Overview and Examples
Greedy Algorithms using Python

Sveip for å vise menyen

book
Euclidean Algorithm

Let’s create a Euclidean algorithm for searching x and y for some integers a and b that

ax + by = gcd(a,b),

where gcd() is the greatest common divisor of a and b.

Searching for gcd(a,b)

We’ll use the fact that gcd(a, b) = gcd(b, a-b), where a >= b. Let’s be greedy and subtract each time as much as possible. The result will be:

gcd(a, b) = gcd(b, a%b)

The algorithm of gcd(a, b) stops when b=0, and the answer is a.

Euclidean Algorithm Realization

Let x and y be the solution of equation ax+by = gcd(a,b) and x1 and y1 are soltion for gcd(b, a%b) = b * x1+a%b*y1. After changing we'll get that `gcd(b, a%b) = b * x1+a%by1 = bx1 + (a - b*a//b)y1 = ay1 + b(x1-a//by1).

Since gcd(a,b) = gcd(b, a%b), multipliers near a and b are equal, so:

x = y1

y = x1-a//b*y1.

We'll use this fact in the algorithm.

Oppgave

Swipe to start coding

Complete the Euclidean Algorithm and test it.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

Awesome!

Completion rate improved to 7.69

book
Euclidean Algorithm

Let’s create a Euclidean algorithm for searching x and y for some integers a and b that

ax + by = gcd(a,b),

where gcd() is the greatest common divisor of a and b.

Searching for gcd(a,b)

We’ll use the fact that gcd(a, b) = gcd(b, a-b), where a >= b. Let’s be greedy and subtract each time as much as possible. The result will be:

gcd(a, b) = gcd(b, a%b)

The algorithm of gcd(a, b) stops when b=0, and the answer is a.

Euclidean Algorithm Realization

Let x and y be the solution of equation ax+by = gcd(a,b) and x1 and y1 are soltion for gcd(b, a%b) = b * x1+a%b*y1. After changing we'll get that `gcd(b, a%b) = b * x1+a%by1 = bx1 + (a - b*a//b)y1 = ay1 + b(x1-a//by1).

Since gcd(a,b) = gcd(b, a%b), multipliers near a and b are equal, so:

x = y1

y = x1-a//b*y1.

We'll use this fact in the algorithm.

Oppgave

Swipe to start coding

Complete the Euclidean Algorithm and test it.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

close

Awesome!

Completion rate improved to 7.69

Sveip for å vise menyen

some-alt