Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Finding the Correlation | Extracting Data
Advanced Techniques in pandas

Sveip for å vise menyen

book
Finding the Correlation

Finally, let's move to the last method of this section called .corr(). It helps out a lot to find the relationship between numerical data. Imagine that you have a dataset on houses:

Let's examine the output of the data.corr() in our case:

So, let's do it step by step: You have vertical and horizontal values; each pair overlaps. In each overlap, we can receive a value from -1 to 1.

  • 1 means that two values depend on each other in a directly proportional way (if one value increases, the other increases too);

  • -1 means that two values depend on each other in an inversely proportional way (if one value increases, the other decreases);

  • 0 means that the two dependent values aren't proportional.

Note

If the dataset contains non-numeric columns, such as in the cars.csv dataset used in the task, you should set the argument numeric_only=True to compute the correlation using only the numeric columns.

Oppgave

Swipe to start coding

You'll end this section with an effortless task: apply the .corr() function to the dataset. Then, try to analyze the numbers you get.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 7

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Finding the Correlation

Finally, let's move to the last method of this section called .corr(). It helps out a lot to find the relationship between numerical data. Imagine that you have a dataset on houses:

Let's examine the output of the data.corr() in our case:

So, let's do it step by step: You have vertical and horizontal values; each pair overlaps. In each overlap, we can receive a value from -1 to 1.

  • 1 means that two values depend on each other in a directly proportional way (if one value increases, the other increases too);

  • -1 means that two values depend on each other in an inversely proportional way (if one value increases, the other decreases);

  • 0 means that the two dependent values aren't proportional.

Note

If the dataset contains non-numeric columns, such as in the cars.csv dataset used in the task, you should set the argument numeric_only=True to compute the correlation using only the numeric columns.

Oppgave

Swipe to start coding

You'll end this section with an effortless task: apply the .corr() function to the dataset. Then, try to analyze the numbers you get.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 7
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt