Challenge: Calculate Beam Deflection
Understanding how beams deflect under load is a fundamental part of structural engineering, as it helps ensure that structures remain safe, serviceable, and comfortable for users. Earlier, you explored how to model beams and apply loads in Python. Now, you will build on that knowledge by focusing on the calculation of maximum deflection for a simply supported beam subjected to a uniform distributed load. This calculation is vital in real-world design, as excessive deflection may compromise both the safety and usability of a structure. The standard formula for the maximum deflection of such a beam is:
[ \delta_{max} = \frac{5 w L^4}{384 E I} ]
where w is the load per unit length, L is the length of the beam, E is the modulus of elasticity, and I is the moment of inertia.
Swipe to start coding
Write a function that computes the maximum deflection of a simply supported beam subjected to a uniform distributed load.
- Use the formula
(5 * w * L ** 4) / (384 * E * I)to calculate the maximum deflection. - The function should accept four parameters:
w,L,E, andI. - Return the calculated maximum deflection.
Løsning
Takk for tilbakemeldingene dine!
single
Spør AI
Spør AI
Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår
Fantastisk!
Completion rate forbedret til 5
Challenge: Calculate Beam Deflection
Sveip for å vise menyen
Understanding how beams deflect under load is a fundamental part of structural engineering, as it helps ensure that structures remain safe, serviceable, and comfortable for users. Earlier, you explored how to model beams and apply loads in Python. Now, you will build on that knowledge by focusing on the calculation of maximum deflection for a simply supported beam subjected to a uniform distributed load. This calculation is vital in real-world design, as excessive deflection may compromise both the safety and usability of a structure. The standard formula for the maximum deflection of such a beam is:
[ \delta_{max} = \frac{5 w L^4}{384 E I} ]
where w is the load per unit length, L is the length of the beam, E is the modulus of elasticity, and I is the moment of inertia.
Swipe to start coding
Write a function that computes the maximum deflection of a simply supported beam subjected to a uniform distributed load.
- Use the formula
(5 * w * L ** 4) / (384 * E * I)to calculate the maximum deflection. - The function should accept four parameters:
w,L,E, andI. - Return the calculated maximum deflection.
Løsning
Takk for tilbakemeldingene dine!
single