Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære How Much Do We Earn | Becoming an Analyst
Introduction to Python for Data Analysis

Sveip for å vise menyen

book
How Much Do We Earn

You may recognize the column 'money_spent' that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!

But firstly, recall some functions:

Group Data:

12
df = df[['columns which we group']] .groupby(['columns on which we group'])
copy

Visualization:

1234
sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
copy
Oppgave

Swipe to start coding

  1. Group data:
  • Extract only columns 'day', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply .mean() function to grouped df.
  • Apply .reset_index() function.
  1. Create a barplot:
  • Use df as the first argument.
  • Use column 'day' for x-axis.
  • Use the column 'money_spent' for the y-axis.
  1. Output barplot.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 4. Kapittel 8

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
How Much Do We Earn

You may recognize the column 'money_spent' that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!

But firstly, recall some functions:

Group Data:

12
df = df[['columns which we group']] .groupby(['columns on which we group'])
copy

Visualization:

1234
sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
copy
Oppgave

Swipe to start coding

  1. Group data:
  • Extract only columns 'day', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply .mean() function to grouped df.
  • Apply .reset_index() function.
  1. Create a barplot:
  • Use df as the first argument.
  • Use column 'day' for x-axis.
  • Use the column 'money_spent' for the y-axis.
  1. Output barplot.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 4. Kapittel 8
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt