Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Scikit-learn for PCA | Model Building
Principal Component Analysis

Sveip for å vise menyen

book
Scikit-learn for PCA

We figured out the implementation of the PCA algorithm using the numpy library. Scikit-learn can let us start using this method with just one line of code:

python

PCA is a scikit-learn library class. It contains more than 5 arguments, but we are most interested in only one - n_components. This argument is responsible for the number of main components that we want to get. The only condition is that the number of components must, of course, be equal to or less than the variables in the dataset. The PCA class contains 2 main methods that we will use: fit and transform. The fit() method loads the data into the class, and the transform() method transforms it, and we get the result of the PCA algorithm. If we want to combine these 2 operations, use the fit_transform() method:

python

If we want to get the components that the algorithm has calculated, call the .components_ attribute:

python
Oppgave

Swipe to start coding

Import the PCA class from the scikit-learn library and create a PCA model for the iris dataset with 2 components.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 1

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Scikit-learn for PCA

We figured out the implementation of the PCA algorithm using the numpy library. Scikit-learn can let us start using this method with just one line of code:

python

PCA is a scikit-learn library class. It contains more than 5 arguments, but we are most interested in only one - n_components. This argument is responsible for the number of main components that we want to get. The only condition is that the number of components must, of course, be equal to or less than the variables in the dataset. The PCA class contains 2 main methods that we will use: fit and transform. The fit() method loads the data into the class, and the transform() method transforms it, and we get the result of the PCA algorithm. If we want to combine these 2 operations, use the fit_transform() method:

python

If we want to get the components that the algorithm has calculated, call the .components_ attribute:

python
Oppgave

Swipe to start coding

Import the PCA class from the scikit-learn library and create a PCA model for the iris dataset with 2 components.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 1
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt