Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Analyze Asset Correlations | Financial Data Analysis with Python
Python for Investors

bookChallenge: Analyze Asset Correlations

Oppgave

Swipe to start coding

You are given a pandas DataFrame called returns that contains daily returns for five different stocks: AAPL, MSFT, GOOG, AMZN, and TSLA.

Complete the following steps:

  • Calculate the correlation matrix for the DataFrame of returns and store it in a variable called corr_matrix.
  • Visualize the correlation matrix using a seaborn heatmap. Make sure the heatmap has a title.
  • Identify the pair of stocks with the highest positive correlation (excluding self-correlation), and the pair with the lowest (most negative) correlation.
  • Print the names of these pairs in the following format:
    • Highest correlation: STOCK1 and STOCK2
    • Lowest correlation: STOCK3 and STOCK4

Replace STOCK1, STOCK2, etc. with the actual stock names from the DataFrame.

Use only the libraries provided in the starter code. Do not fetch any data online or use additional datasets.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 7
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

bookChallenge: Analyze Asset Correlations

Sveip for å vise menyen

Oppgave

Swipe to start coding

You are given a pandas DataFrame called returns that contains daily returns for five different stocks: AAPL, MSFT, GOOG, AMZN, and TSLA.

Complete the following steps:

  • Calculate the correlation matrix for the DataFrame of returns and store it in a variable called corr_matrix.
  • Visualize the correlation matrix using a seaborn heatmap. Make sure the heatmap has a title.
  • Identify the pair of stocks with the highest positive correlation (excluding self-correlation), and the pair with the lowest (most negative) correlation.
  • Print the names of these pairs in the following format:
    • Highest correlation: STOCK1 and STOCK2
    • Lowest correlation: STOCK3 and STOCK4

Replace STOCK1, STOCK2, etc. with the actual stock names from the DataFrame.

Use only the libraries provided in the starter code. Do not fetch any data online or use additional datasets.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 7
single

single

some-alt