Label Encoding of the Target Variable
Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:
- Methods work with different data dimensions;
- The order of the categories is not important for label encoding.
How to use this method in Python:
1234567891011121314from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
Swipe to start coding
Read the dataset 'salary_and_gender.csv'
and encode the output column 'Gender'
with label encoding.
Løsning
Takk for tilbakemeldingene dine!
single
Spør AI
Spør AI
Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår
Awesome!
Completion rate improved to 3.33Awesome!
Completion rate improved to 3.33
Label Encoding of the Target Variable
Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:
- Methods work with different data dimensions;
- The order of the categories is not important for label encoding.
How to use this method in Python:
1234567891011121314from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
Swipe to start coding
Read the dataset 'salary_and_gender.csv'
and encode the output column 'Gender'
with label encoding.
Løsning
Takk for tilbakemeldingene dine!
single
Awesome!
Completion rate improved to 3.33
Label Encoding of the Target Variable
Sveip for å vise menyen
Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:
- Methods work with different data dimensions;
- The order of the categories is not important for label encoding.
How to use this method in Python:
1234567891011121314from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
Swipe to start coding
Read the dataset 'salary_and_gender.csv'
and encode the output column 'Gender'
with label encoding.
Løsning
Takk for tilbakemeldingene dine!