Changing the Data Type
You already know how to change the data type from string to number, for example. But let's take a closer look at this small but important task.
Let's start by changing the data type from string to datetime
. Most often, you will need this to work with time series. You can perform this operation using the .to_datetime()
method:
df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
To convert a string to a bool
- use the .map()
method on the column whose values you want to change:
df['C1'] = df['C1'].map({'yes': True, 'no': False})
For example, if you have a price column that looks like "$198,800" and you want to turn it into a float
- you should create custom transformation functions:
12345678910111213import pandas as pd import re # Create simple dataset df = pd.DataFrame(data={'Price':['$4,122.94', '$1,002.3']}) # Create a custom function to transform data # x - value from column def price2int(x): return float(re.sub(r'[\$\,]', '', x)) # Use custom transformation on a column df['Price'] = df['Price'].apply(price2int)
Swipe to start coding
Read the sales_data_types.csv
dataset and change the data type in the Active
column from str
to bool
.
Løsning
Takk for tilbakemeldingene dine!
single
Spør AI
Spør AI
Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår
Awesome!
Completion rate improved to 3.33
Changing the Data Type
Sveip for å vise menyen
You already know how to change the data type from string to number, for example. But let's take a closer look at this small but important task.
Let's start by changing the data type from string to datetime
. Most often, you will need this to work with time series. You can perform this operation using the .to_datetime()
method:
df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d')
To convert a string to a bool
- use the .map()
method on the column whose values you want to change:
df['C1'] = df['C1'].map({'yes': True, 'no': False})
For example, if you have a price column that looks like "$198,800" and you want to turn it into a float
- you should create custom transformation functions:
12345678910111213import pandas as pd import re # Create simple dataset df = pd.DataFrame(data={'Price':['$4,122.94', '$1,002.3']}) # Create a custom function to transform data # x - value from column def price2int(x): return float(re.sub(r'[\$\,]', '', x)) # Use custom transformation on a column df['Price'] = df['Price'].apply(price2int)
Swipe to start coding
Read the sales_data_types.csv
dataset and change the data type in the Active
column from str
to bool
.
Løsning
Takk for tilbakemeldingene dine!
Awesome!
Completion rate improved to 3.33single